

Welcome to PyGMQL’s documentation!

PyGMQL is a python module that enables the user to perform operation on genomic data in a scalable way.

Contents:

	Installation
	Prerequisites

	Using the github repository

	Introduction
	Importing the library

	Loading of data

	Writing a GMQL query

	Materializing a result

	The result data structure

	The Genomic data model

	The GMQLDataset
	Loading functions

	GDataframe

	Remote data management

	Library settings
	Logging and progress bars

	Index

	Module Index

	Search Page

Indices and tables

Dataset structures

	GMQLDataset.GMQLDataset

	

	GDataframe.GDataframe

	

Dataset loading functions

	load_from_path

	

	load_from_remote

	

Parsing

	BedParser.BedParser

	

Aggregates operators

	COUNT

	

	SUM

	

	MIN

	

	MAX

	

	AVG

	

	BAG

	

	STD

	

	MEDIAN

	

	Q1

	

	Q2

	

	Q3

	

Genometric predicates

	MD

	

	DLE

	

	DGE

	

	UP

	

	DOWN

	

Installation

Prerequisites

In order to use the library you need to have Java installed in your system. And, in particular,
the environment variable JAVA_HOME must be setted to your current Java installation.

Using the github repository

You can install this library by downloading its source code from the github repository:

git clone https://github.com/DEIB-GECO/PyGMQL.git

and then using:

cd PyGMQL/
pip install -e .

This will install the library and its dependencies in your system.

Introduction

In this brief tutorial we will explain the typical workflow of the user of PyGMQL.
In the github page of the project you can find a lot more example of usage of the library.

You can use this library both interactively and programmatically. We strongly suggest to use it
inside a Jupyter notebook for the best graphical render and data exploration.

Importing the library

To import the library simply type:

import gmql as gl

If it is the first time you use PyGMQL, the Scala backend program will be downloaded. Therefore
we suggest to be connected to the internet the first time you use the library.

Loading of data

The first thing we want to do with PyGMQL is to load our data. You can do that by calling the
gmql.dataset.loaders.Loader.load_from_path(). This method loads a reference to a local gmql dataset in memory and
creates a GMQLDataset. If the dataset in the specified
directory is already GMQL standard (has the xml schema file), you only need to do the following:

dataset = gl.load_from_path(local_path="path/to/local/dataset")

while, if the dataset has no schema, you need to provide it manually. This can be done by
creating a custom parser using BedParser like in the following:

custom_parser = gl.parsers.BedParser(chrPos=0, startPos=1, stopPos=2,
 otherPos=[(3, "gene", "string")])
dataset = gl.load_from_path(local_path="path/to/local/dataset", parser=custom_parser)

Writing a GMQL query

Now we have a dataset. We can now perform some GMQL operations on it. For example, we want
to select samples that satisfy a specific metadata condition:

selected_samples = dataset[(dataset['cell'] == 'es') | (dataset['tumor'] == 'brca')]

Each operation on a GMQLDataset returns an other GMQLDataset. You can also do operations using
two datasets:

other_dataset = gl.load_from_path("path/to/other/local/dataset")

union_dataset = dataset.union(other_dataset) # the union
join_dataset = dataset.join(other_dataset, predicate=[gl.MD(10000)]) # a join

Materializing a result

PyGMQL implements a lazy execution strategy. No operation is performed until a materialize operation
is requested:

result = join_dataset.materialize()

If nothing is passed to the materialize operation, all the data are directly loaded in memory without
writing the result dataset to the disk. If you want also to save the data for future computation
you need to specify the output path:

result = join_dataset.materialize("path/to/output/dataset")

The result data structure

When you materialize a result, a GDataframe object is returned.
This object is a wrapper of two pandas dataframes, one for the regions and one for the metadata.
You can access them in the following way:

result.meta # for the metadata
result.regs # for the regions

These dataframes are structured as follows:

	The region dataframe puts in every line a different region. The source sample for the
specific region is the index of the line. Each column represent a field of the region data.

	The metadata dataframe has one row for each sample in the dataset. Each column represent
a different metadata attribute. Each cell of this dataframe represent the values of a
specific metadata for that specific sample. Multiple values are allowed for each cell.

The Genomic data model

As we have said, PyGMQL is a Python interface to the GMQL system.
In order to understand how the library works, a little insights on
the data model used by GMQL is necessary.

GMQL is based on a representation of the genomic information known as GDM - Genomic
Data Model. Datasets are composed of samples , which in turn contains two kinds of data:

	Region values (or simply regions), aligned w.r.t. a given reference, with specific
left-right ends within a chromosome. Regions can store different information regarding the
“spot” they mark in a particular
sample, such as region length or statistical significance. Regions of the model
describe processed data, e.g. mutations, expression or bindings; they have a
schema , with 5 common attributes (id , chr , left , right , strand) including the id of the
region and the region coordinates, along the aligned reference genome, and then
arbitrary typed attributes. This provides interoperability across a plethora of genomic
data formats

	Metadata, storing all the knowledge about the particular sample, are arbitrary
attribute-value pairs, independent from any standardization attempt; they trace the
data provenance, including biological and clinical aspects

The GMQLDataset

Here we present the functions that can be used on a GMQLDataset.

Loading functions

You can create a GMQLDataset by loading the data using the following functions:

GDataframe

Remote data management

PyGMQL can be used in two different ways. The first one (and the most intuitive and classical one)
is to use it like any other computational library.

The second way is to make the library interact with a remote server. In order to do that you need to
create an instance of a RemoteManager.

Library settings

The following functions define the behavior of the library

Logging and progress bars

Index

Aggregation operators

Genometric predicates

An additional clause that can be specified in a genometric predicate is UP/DOWN, called
the upstream/downstream clause, which refers to the upstream and downstream directions
of the genome. This clause requires that the rest of the predicate hold only on the
upstream (downstream) genome with respect to the anchor region. More specifically:

	In the positive strand (or when the strand is unknown), UP is true for those regions of
the experiment whose right-end is lower than, the left-end of the anchor, and DOWN is
true for those regions of the experiment whose left-end is higher than the right-end
of the anchor

	In the negative strand disequations are exchanged

	Remaining regions of the experiment must be overlapping with the anchor region

Parsers

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyGMQL’s documentation!

 		
 Installation

 		
 Prerequisites

 		
 Using the github repository

 		
 Introduction

 		
 Importing the library

 		
 Loading of data

 		
 Writing a GMQL query

 		
 Materializing a result

 		
 The result data structure

 		
 The Genomic data model

 		
 The GMQLDataset

 		
 Loading functions

 		
 GDataframe

 		
 Remote data management

 		
 Library settings

 		
 Logging and progress bars

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

