
PyGMQL Documentation
Release 0.1.2

Luca Nanni

Dec 01, 2021

Contents:

1 Installation 3

2 Introduction 5

3 The Genomic data model 9

4 Genometric Query Language 11

5 The GMQLDataset 13

6 Building expressions 25

7 GDataframe 27

8 Remote data management 29

9 Library settings 33

10 Spark and system configurations 35

11 Tutorials 37

12 Data structures and functions 39

Python Module Index 43

Index 45

i

ii

PyGMQL Documentation, Release 0.1.2

PyGMQL is a python module that enables the user to perform operation on genomic data in a scalable way.

This library is part of the bigger project GMQL which aims at designing and developing a genomic data management
and analysis software on top of big data engines for helping biologists, researchers and data scientists.

GMQL is a declarative language with a SQL-like syntax. PyGMQL translates this paradigm to the interactive and
script-oriented world of python, enabling the integration of genomic data with classical Python packages for machine
learning and data science.

Contents: 1

http://www.bioinformatics.deib.polimi.it/genomic_computing/

PyGMQL Documentation, Release 0.1.2

2 Contents:

CHAPTER 1

Installation

1.1 Prerequisites

Here we list the requirements of this library from the point of view of the Python versions that are supported and the
external programs needed in order to use it.

1.1.1 Java

In order to use the library you need to have Java installed in your system. And, in particular, the environment variable
JAVA_HOME must be setted to your current Java installation.

If JAVA_HOME is not setted an error will be thrown at the first import of the library. In that case the following steps
must be perfomed:

1. Install the latest version of Java (follows this link)

2. Set JAVA_HOME. This can be done differently depending on the your OS:

1. Linux:

echo export "JAVA_HOME=/path/to/java" >> ~/.bash_profile
source ~/.bash_profile

2. Mac:

echo export "JAVA_HOME=\$(/usr/libexec/java_home)" >> ~/.bash_profile
source ~/.bash_profile

3. Windows:

1. Right click My Computer and select Properties

2. On the Advanced tab, select Environment Variables, and then edit JAVA_HOME to point to where the
JDK software is located, for example, C:\Program Files\Java\jdk1.6.0_02

3

https://www.java.com/it/download/

PyGMQL Documentation, Release 0.1.2

1.1.2 Python

Currently PyGMQL supports only Python 3.5, 3.6 and 3.7.

1.2 Using the github repository

You can install this library by downloading its source code from the github repository:

git clone https://github.com/DEIB-GECO/PyGMQL.git

and then using:

cd PyGMQL/
pip install -e .

This will install the library and its dependencies in your system.

1.3 Using PIP

The package can be also downloaded and installed directly in your python distribution using:

pip install gmql

1.4 Installation of the backend

PyGMQL computational engine is written in Scala. The backend comes as a JAR file which will be downloaded at the
first usage of the library:

import gmql

4 Chapter 1. Installation

CHAPTER 2

Introduction

In this brief tutorial we will explain the typical workflow of the user of PyGMQL. In the github page of the project
you can find a lot more example of usage of the library.

You can use this library both interactively and programmatically. We strongly suggest to use it inside a Jupyter
notebook for the best graphical render and data exploration.

2.1 Importing the library

To import the library simply type:

import gmql as gl

If it is the first time you use PyGMQL, the Scala backend program will be downloaded. Therefore we suggest to be
connected to the internet the first time you use the library.

2.2 Loading of data

The first thing we want to do with PyGMQL is to load our data. You can do that by calling the gmql.dataset.
loaders.Loader.load_from_path(). This method loads a reference to a local gmql dataset in memory and
creates a GMQLDataset. If the dataset in the specified directory is already GMQL standard (has the xml schema
file), you only need to do the following:

dataset = gl.load_from_path(local_path="path/to/local/dataset")

while, if the dataset has no schema, you need to provide it manually. This can be done by creating a custom parser
using RegionParser like in the following:

custom_parser = gl.parsers.RegionParser(chrPos=0, startPos=1, stopPos=2,
otherPos=[(3, "gene", "string")])

dataset = gl.load_from_path(local_path="path/to/local/dataset", parser=custom_parser)

5

PyGMQL Documentation, Release 0.1.2

2.3 Writing a GMQL query

Now we have a dataset. We can now perform some GMQL operations on it. For example, we want to select samples
that satisfy a specific metadata condition:

selected_samples = dataset[(dataset['cell'] == 'es') | (dataset['tumor'] == 'brca')]

Each operation on a GMQLDataset returns an other GMQLDataset. You can also do operations using two datasets:

other_dataset = gl.load_from_path("path/to/other/local/dataset")

union_dataset = dataset.union(other_dataset) # the union
join_dataset = dataset.join(other_dataset, predicate=[gl.MD(10000)]) # a join

2.4 Materializing a result

PyGMQL implements a lazy execution strategy. No operation is performed until a materialize operation is requested:

result = join_dataset.materialize()

If nothing is passed to the materialize operation, all the data are directly loaded in memory without writing the result
dataset to the disk. If you want also to save the data for future computation you need to specify the output path:

result = join_dataset.materialize("path/to/output/dataset")

2.5 The result data structure

When you materialize a result, a GDataframe object is returned. This object is a wrapper of two pandas dataframes,
one for the regions and one for the metadata. You can access them in the following way:

result.meta # for the metadata
result.regs # for the regions

These dataframes are structured as follows:

• The region dataframe puts in every line a different region. The source sample for the specific region is the index
of the line. Each column represent a field of the region data.

• The metadata dataframe has one row for each sample in the dataset. Each column represent a different metadata
attribute. Each cell of this dataframe represent the values of a specific metadata for that specific sample. Multiple
values are allowed for each cell.

6 Chapter 2. Introduction

PyGMQL Documentation, Release 0.1.2

2.5. The result data structure 7

PyGMQL Documentation, Release 0.1.2

8 Chapter 2. Introduction

CHAPTER 3

The Genomic data model

As we have said, PyGMQL is a Python interface to the GMQL system. In order to understand how the library works,
a little insights on the data model used by GMQL is necessary.

GMQL is based on a representation of the genomic information known as GDM - Genomic Data Model. Datasets are
composed of samples , which in turn contains two kinds of data:

• Region values (or simply regions), aligned w.r.t. a given reference, with specific left-right ends within a chro-
mosome. Regions can store different information regarding the “spot” they mark in a particular sample, such as
region length or statistical significance. Regions of the model describe processed data, e.g. mutations, expres-
sion or bindings; they have a schema , with 5 common attributes (id , chr , left , right , strand) including the id
of the region and the region coordinates, along the aligned reference genome, and then arbitrary typed attributes.
This provides interoperability across a plethora of genomic data formats

• Metadata, storing all the knowledge about the particular sample, are arbitrary attribute-value pairs, independent
from any standardization attempt; they trace the data provenance, including biological and clinical aspects

This is exemplified by the figure below, showing on the left the regions and on the right the metadata of a dataset
sample.

9

PyGMQL Documentation, Release 0.1.2

10 Chapter 3. The Genomic data model

CHAPTER 4

Genometric Query Language

GMQL is a declarative language for genomic region and metadata manipulation with a SQL-inspired syntax. With
GMQL the user can perform complex queries on the basis of positional, categorical and numeric features of the
datasets.

You can find more information about the language at the following links:

• Complete introduction to the GMQL language: here we explain all the operators of the GMQL language
together with some explanatory examples.

• Explained examples and biological applications: here we present several complex queries showing the
expressiveness of the language in a biological research setting.

NB: In order to use PyGMQL one should have at least clear the semantics of the GMQL operators, but the library is
designed to be self contained and can be used without a strong background knowledge of the language.

4.1 GMQL engine

The GMQL engine is composed by various sub-systems:

• A repository, which enables the user to store his/her datasets, the results of the queries and to access the
public datasets shared between the users of the same GMQL instance

• An engine implementation, which implements the GMQL operators. Currently the Spark engine is the
most updated and complete implementation and it is the one used also by PyGMQL

11

http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/doc/GMQL_introduction_to_the_language.pdf
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/doc/GMQL_biological_examples.pdf

PyGMQL Documentation, Release 0.1.2

4.2 GMQL WEB interface

The GMQL system is publicly available at this link.

12 Chapter 4. Genometric Query Language

http://gmql.eu/gmql-rest/

CHAPTER 5

The GMQLDataset

Here we present the functions that can be used on a GMQLDataset.

class GMQLDataset(parser=None, index=None, location=’local’, path_or_name=None, lo-
cal_sources=None, remote_sources=None, meta_profile=None)

The main abstraction of the library. A GMQLDataset represents a genomic dataset in the GMQL standard and it
is divided in region data and meta data. The function that can be applied to a GMQLDataset affect one of these
two features or both.

For each operator function that can be applied to a GMQLDataset we provide the documentation, some exam-
ples, and we specify which operator of GMQL the function is wrapper of.

get_reg_attributes()
Returns the region fields of the dataset

Returns a list of field names

MetaField(name, t=None)
Creates an instance of a metadata field of the dataset. It can be used in building expressions or conditions
for projection or selection. Notice that this function is equivalent to call:

dataset["name"]

If the MetaField is used in a region projection (reg_project()), the user has also to specify the type
of the metadata attribute that is selected:

dataset.reg_project(new_field_dict={'new_field': dataset['name', 'string']})

Parameters

• name – the name of the metadata that is considered

• t – the type of the metadata attribute {string, int, boolean, double}

Returns a MetaField instance

13

PyGMQL Documentation, Release 0.1.2

RegField(name)
Creates an instance of a region field of the dataset. It can be used in building expressions or conditions for
projection or selection. Notice that this function is equivalent to:

dataset.name

Parameters name – the name of the region field that is considered

Returns a RegField instance

select(meta_predicate=None, region_predicate=None, semiJoinDataset=None, semiJoin-
Meta=None)

Wrapper of SELECT

Selection operation. Enables to filter datasets on the basis of region features or metadata attributes. In
addition it is possibile to perform a selection based on the existence of certain metadata semiJoinMeta
attributes and the matching of their values with those associated with at least one sample in an external
dataset semiJoinDataset.

Therefore, the selection can be based on:

• Metadata predicates: selection based on the existence and values of certain metadata attributes in each
sample. In predicates, attribute-value conditions can be composed using logical predicates & (and), |
(or) and ~ (not)

• Region predicates: selection based on region attributes. Conditions can be composed using logical
predicates & (and), | (or) and ~ (not)

• SemiJoin clauses: selection based on the existence of certain metadata semiJoinMeta attributes
and the matching of their values with those associated with at least one sample in an external dataset
semiJoinDataset

In the following example we select all the samples from Example_Dataset_1 regarding antibody CTCF.
From these samples we select only the regions on chromosome 6. Finally we select only the samples which
have a matching antibody_targetClass in Example_Dataset_2:

import gmql as gl
d1 = gl.get_example_dataset("Example_Dataset_1")
d2 = gl.get_example_dataset("Example_Dataset_2")

d_select = d.select(meta_predicate = d['antibody'] == "CTCF",
region_predicate = d.chr == "chr6",
semiJoinDataset=d2, semiJoinMeta=["antibody_targetClass"])

Parameters

• meta_predicate – logical predicate on the metadata <attribute, value> pairs

• region_predicate – logical predicate on the region feature values

• semiJoinDataset – an other GMQLDataset

• semiJoinMeta – a list of metadata attributes (strings)

Returns a new GMQLDataset

meta_select(predicate=None, semiJoinDataset=None, semiJoinMeta=None)
Wrapper of SELECT

Wrapper of the select() function filtering samples only based on metadata.

14 Chapter 5. The GMQLDataset

PyGMQL Documentation, Release 0.1.2

Parameters

• predicate – logical predicate on the values of the rows

• semiJoinDataset – an other GMQLDataset

• semiJoinMeta – a list of metadata

Returns a new GMQLDataset

Example 1:

output_dataset = dataset.meta_select(dataset['patient_age'] < 70)
This statement can be written also as
output_dataset = dataset[dataset['patient_age'] < 70]

Example 2:

output_dataset = dataset.meta_select((dataset['tissue_status'] == 'tumoral')
→˓&

(tumor_tag != 'gbm') | (tumor_tag == 'brca
→˓'))
This statement can be written also as
output_dataset = dataset[(dataset['tissue_status'] == 'tumoral') &

(tumor_tag != 'gbm') | (tumor_tag == 'brca')]

Example 3:

JUN_POLR2A_TF = HG19_ENCODE_NARROW.meta_select(JUN_POLR2A_TF['antibody_target
→˓'] == 'JUN',

semiJoinDataset=POLR2A_TF,
→˓semiJoinMeta=['cell'])

The meta selection predicate can use all the classical equalities and disequalities {>, <, >=, <=, ==, !=}
and predicates can be connected by the classical logical symbols {& (AND), | (OR), ~ (NOT)} plus the
isin function.

reg_select(predicate=None, semiJoinDataset=None, semiJoinMeta=None)
Wrapper of SELECT

Wrapper of the select() function filtering regions only based on region attributes.

Parameters

• predicate – logical predicate on the values of the regions

• semiJoinDataset – an other GMQLDataset

• semiJoinMeta – a list of metadata

Returns a new GMQLDataset

An example of usage:

new_dataset = dataset.reg_select((dataset.chr == 'chr1') | (dataset.pValue <
→˓0.9))

You can also use Metadata attributes in selection:

new_dataset = dataset.reg_select(dataset.score > dataset['size'])

This statement selects all the regions whose field score is strictly higher than the sample metadata attribute
size.

15

PyGMQL Documentation, Release 0.1.2

The region selection predicate can use all the classical equalities and disequalities {>, <, >=, <=, ==, !=}
and predicates can be connected by the classical logical symbols {& (AND), | (OR), ~ (NOT)} plus the
isin function.

In order to be sure about the correctness of the expression, please use parenthesis to delimit the various
predicates.

project(projected_meta=None, new_attr_dict=None, all_but_meta=None, projected_regs=None,
new_field_dict=None, all_but_regs=None)

Wrapper of PROJECT

The PROJECT operator creates, from an existing dataset, a new dataset with all the samples (with their
regions and region values) in the input one, but keeping for each sample in the input dataset only those
metadata and/or region attributes expressed in the operator parameter list. Region coordinates and values
of the remaining metadata and region attributes remain equal to those in the input dataset. Differently from
the SELECT operator, PROJECT allows to:

• Remove existing metadata and/or region attributes from a dataset;

• Create new metadata and/or region attributes to be added to the result.

Parameters

• projected_meta – list of metadata attributes to project on

• new_attr_dict – an optional dictionary of the form {‘new_meta_1’: function1,
‘new_meta_2’: function2, . . . } in which every function computes the new metadata at-
tribute based on the values of the others

• all_but_meta – list of metadata attributes that must be excluded from the projection

• projected_regs – list of the region fields to select

• new_field_dict – an optional dictionary of the form {‘new_field_1’: function1,
‘new_field_2’: function2, . . . } in which every function computes the new region field
based on the values of the others

• all_but_regs – list of region fields that must be excluded from the projection

Returns a new GMQLDataset

meta_project(attr_list=None, all_but=None, new_attr_dict=None)
Wrapper of PROJECT

Project the metadata based on a list of attribute names

Parameters

• attr_list – list of the metadata fields to select

• all_but – list of metadata that must be excluded from the projection.

• new_attr_dict – an optional dictionary of the form {‘new_field_1’: function1,
‘new_field_2’: function2, . . . } in which every function computes the new field based on
the values of the others

Returns a new GMQLDataset

Notice that if attr_list is specified, all_but cannot be specified and viceversa.

Examples:

new_dataset = dataset.meta_project(attr_list=['antibody', 'ID'],
new_attr_dict={'new_meta': dataset['ID'] +

→˓100}) (continues on next page)

16 Chapter 5. The GMQLDataset

PyGMQL Documentation, Release 0.1.2

(continued from previous page)

reg_project(field_list=None, all_but=None, new_field_dict=None)
Wrapper of PROJECT

Project the region data based on a list of field names

Parameters

• field_list – list of the fields to select

• all_but – keep only the region fields different from the ones specified

• new_field_dict – an optional dictionary of the form {‘new_field_1’: function1,
‘new_field_2’: function2, . . . } in which every function computes the new field based on
the values of the others

Returns a new GMQLDataset

An example of usage:

new_dataset = dataset.reg_project(['pValue', 'name'],
{'new_field': dataset.pValue / 2})

new_dataset = dataset.reg_project(field_list=['peak', 'pvalue'],
new_field_dict={'new_field': dataset.pvalue

→˓* dataset['cell_age', 'float']})

Notice that you can use metadata attributes for building new region fields. The only thing to remember
when doing so is to define also the type of the output region field in the metadata attribute definition (for
example, dataset['cell_age', 'float'] is required for defining the new attribute new_field
as float). In particular, the following type names are accepted: ‘string’, ‘char’, ‘long’, ‘integer’, ‘boolean’,
‘float’, ‘double’.

extend(new_attr_dict)
Wrapper of EXTEND

For each sample in an input dataset, the EXTEND operator builds new metadata attributes, assigns their
values as the result of arithmetic and/or aggregate functions calculated on sample region attributes, and
adds them to the existing metadata attribute-value pairs of the sample. Sample number and their genomic
regions, with their attributes and values, remain unchanged in the output dataset.

Parameters new_attr_dict – a dictionary of the type {‘new_metadata’ : AGGRE-
GATE_FUNCTION(‘field’), . . . }

Returns new GMQLDataset

An example of usage, in which we count the number of regions in each sample and the minimum value of
the pValue field and export it respectively as metadata attributes regionCount and minPValue:

import gmql as gl

dataset = gl.get_example_dataset("Example_Dataset_1")
new_dataset = dataset.extend({'regionCount' : gl.COUNT(),

'minPValue' : gl.MIN('pValue')})

cover(minAcc, maxAcc, groupBy=None, new_reg_fields=None, cover_type=’normal’)
Wrapper of COVER

COVER is a GMQL operator that takes as input a dataset (of usually, but not necessarily, multiple sam-
ples) and returns another dataset (with a single sample, if no groupby option is specified) by “collapsing”

17

PyGMQL Documentation, Release 0.1.2

the input samples and their regions according to certain rules specified by the COVER parameters. The
attributes of the output regions are only the region coordinates, plus in case, when aggregate functions
are specified, new attributes with aggregate values over attribute values of the contributing input regions;
output metadata are the union of the input ones, plus the metadata attributes JaccardIntersect and Jac-
cardResult, representing global Jaccard Indexes for the considered dataset, computed as the correspondent
region Jaccard Indexes but on the whole sample regions.

Parameters

• cover_type – the kind of cover variant you want [‘normal’, ‘flat’, ‘summit’, ‘his-
togram’]

• minAcc – minimum accumulation value, i.e. the minimum number of overlapping re-
gions to be considered during COVER execution. It can be any positive number or the
strings {‘ALL’, ‘ANY’}.

• maxAcc – maximum accumulation value, i.e. the maximum number of overlapping re-
gions to be considered during COVER execution. It can be any positive number or the
strings {‘ALL’, ‘ANY’}.

• groupBy – optional list of metadata attributes

• new_reg_fields – dictionary of the type {‘new_region_attribute’ : AGGRE-
GATE_FUNCTION(‘field’), . . . }

Returns a new GMQLDataset

An example of usage:

cell_tf = narrow_peak.cover("normal", minAcc=1, maxAcc="Any",
groupBy=['cell', 'antibody_target'])

normal_cover(minAcc, maxAcc, groupBy=None, new_reg_fields=None)
Wrapper of COVER

The normal cover operation as described in cover(). Equivalent to calling:

dataset.cover("normal", ...)

flat_cover(minAcc, maxAcc, groupBy=None, new_reg_fields=None)
Wrapper of COVER

Variant of the function cover() that returns the union of all the regions which contribute to the COVER.
More precisely, it returns the contiguous regions that start from the first end and stop at the last end of the
regions which would contribute to each region of a COVER.

Equivalent to calling:

cover("flat", ...)

summit_cover(minAcc, maxAcc, groupBy=None, new_reg_fields=None)
Wrapper of COVER

Variant of the function cover() that returns only those portions of the COVER result where the maxi-
mum number of regions overlap (this is done by returning only regions that start from a position after which
the number of overlaps does not increase, and stop at a position where either the number of overlapping
regions decreases or violates the maximum accumulation index).

Equivalent to calling:

cover("summit", ...)

18 Chapter 5. The GMQLDataset

PyGMQL Documentation, Release 0.1.2

histogram_cover(minAcc, maxAcc, groupBy=None, new_reg_fields=None)
Wrapper of COVER

Variant of the function cover() that returns all regions contributing to the COVER divided in different
(contiguous) parts according to their accumulation index value (one part for each different accumulation
value), which is assigned to the AccIndex region attribute.

Equivalent to calling:

cover("histogram", ...)

join(experiment, genometric_predicate, output=’LEFT’, joinBy=None, refName=’REF’, exp-
Name=’EXP’, left_on=None, right_on=None)

Wrapper of JOIN

The JOIN operator takes in input two datasets, respectively known as anchor (the first/left one) and ex-
periment (the second/right one) and returns a dataset of samples consisting of regions extracted from the
operands according to the specified condition (known as genometric predicate). The number of generated
output samples is the Cartesian product of the number of samples in the anchor and in the experiment
dataset (if no joinby close if specified). The attributes (and their values) of the regions in the output dataset
are the union of the region attributes (with their values) in the input datasets; homonymous attributes are
disambiguated by prefixing their name with their dataset name. The output metadata are the union of the
input metadata, with their attribute names prefixed with their input dataset name.

Parameters

• experiment – an other GMQLDataset

• genometric_predicate – a list of Genometric atomic conditions. For an explanation
of each of them go to the respective page.

• output – one of four different values that declare which region is given in output for
each input pair of anchor and experiment regions satisfying the genometric predicate:

– ’LEFT’: outputs the anchor regions from the anchor dataset that satisfy the genometric
predicate

– ’RIGHT’: outputs the anchor regions from the experiment dataset that satisfy the geno-
metric predicate

– ’INT’: outputs the overlapping part (intersection) of the anchor and experiment regions
that satisfy the genometric predicate; if the intersection is empty, no output is produced

– ’CONTIG’: outputs the concatenation between the anchor and experiment regions that
satisfy the genometric predicate, i.e. the output region is defined as having left (right)
coordinates equal to the minimum (maximum) of the corresponding coordinate values
in the anchor and experiment regions satisfying the genometric predicate

• joinBy – list of metadata attributes

• refName – name that you want to assign to the reference dataset

• expName – name that you want to assign to the experiment dataset

• left_on – list of region fields of the reference on which the join must be performed

• right_on – list of region fields of the experiment on which the join must be performed

Returns a new GMQLDataset

An example of usage, in which we perform the join operation between Example_Dataset_1 and Exam-
ple_Dataset_2 specifying than we want to join the regions of the former with the first regions at a minimim

19

PyGMQL Documentation, Release 0.1.2

distance of 120Kb of the latter and finally we want to output the regions of Example_Dataset_2 matching
the criteria:

import gmql as gl

d1 = gl.get_example_dataset("Example_Dataset_1")
d2 = gl.get_example_dataset("Example_Dataset_2")

result_dataset = d1.join(experiment=d2,
genometric_predicate=[gl.MD(1), gl.DGE(120000)],
output="right")

map(experiment, new_reg_fields=None, joinBy=None, refName=’REF’, expName=’EXP’)
Wrapper of MAP

MAP is a non-symmetric operator over two datasets, respectively called reference and experiment. The op-
eration computes, for each sample in the experiment dataset, aggregates over the values of the experiment
regions that intersect with a region in a reference sample, for each region of each sample in the reference
dataset; we say that experiment regions are mapped to the reference regions. The number of generated
output samples is the Cartesian product of the samples in the two input datasets; each output sample has
the same regions as the related input reference sample, with their attributes and values, plus the attributes
computed as aggregates over experiment region values. Output sample metadata are the union of the re-
lated input sample metadata, whose attribute names are prefixed with their input dataset name. For each
reference sample, the MAP operation produces a matrix like structure, called genomic space, where each
experiment sample is associated with a row, each reference region with a column, and each matrix row is
a vector of numbers - the aggregates computed during MAP execution. When the features of the reference
regions are unknown, the MAP helps in extracting the most interesting regions out of many candidates.

Parameters

• experiment – a GMQLDataset

• new_reg_fields – an optional dictionary of the form {‘new_field_1’: AGGRE-
GATE_FUNCTION(field), . . . }

• joinBy – optional list of metadata

• refName – name that you want to assign to the reference dataset

• expName – name that you want to assign to the experiment dataset

Returns a new GMQLDataset

In the following example, we map the regions of Example_Dataset_2 on the ones of Example_Dataset_1
and for each region of Example_Dataset_1 we ouput the average Pvalue and number of mapped regions
of Example_Dataset_2. In addition we specify that the output region fields and metadata attributes will
have the D1 and D2 suffixes respectively for attributes and fields belonging the Example_Dataset_1 and
Example_Dataset_2:

import gmql as gl

d1 = gl.get_example_dataset("Example_Dataset_1")
d2 = gl.get_example_dataset("Example_Dataset_2")

result = d1.map(experiment=d2, refName="D1", expName="D2",
new_reg_fields={"avg_pValue": gl.AVG("pvalue")})

order(meta=None, meta_ascending=None, meta_top=None, meta_k=None, regs=None,
regs_ascending=None, region_top=None, region_k=None)

Wrapper of ORDER

20 Chapter 5. The GMQLDataset

PyGMQL Documentation, Release 0.1.2

The ORDER operator is used to order either samples, sample regions, or both, in a dataset according to
a set of metadata and/or region attributes, and/or region coordinates. The number of samples and their
regions in the output dataset is as in the input dataset, as well as their metadata and region attributes and
values, but a new ordering metadata and/or region attribute is added with the sample or region ordering
value, respectively.

Parameters

• meta – list of metadata attributes

• meta_ascending – list of boolean values (True = ascending, False = descending)

• meta_top – “top”, “topq” or “topp” or None

• meta_k – a number specifying how many results to be retained

• regs – list of region attributes

• regs_ascending – list of boolean values (True = ascending, False = descending)

• region_top – “top”, “topq” or “topp” or None

• region_k – a number specifying how many results to be retained

Returns a new GMQLDataset

Example of usage. We order Example_Dataset_1 metadata by ascending antibody and descending anti-
body_class keeping only the first sample. We also order the resulting regions based on the score field in
descending order, keeping only the first one also in this case:

import gmql as gl

d1 = gl.get_example_dataset("Example_Dataset_1")

result = d1.order(meta=["antibody", "antibody_targetClass"],
meta_ascending=[True, False], meta_top="top", meta_k=1,
regs=['score'], regs_ascending=[False],
region_top="top", region_k=1)

difference(other, joinBy=None, exact=False)
Wrapper of DIFFERENCE

DIFFERENCE is a binary, non-symmetric operator that produces one sample in the result for each sample
of the first operand, by keeping the same metadata of the first operand sample and only those regions (with
their schema and values) of the first operand sample which do not intersect with any region in the second
operand sample (also known as negative regions)

Parameters

• other – GMQLDataset

• joinBy – (optional) list of metadata attributes. It is used to extract subsets of samples on
which to apply the operator: only those samples in the current and other dataset that have
the same value for each specified attribute are considered when performing the operation

• exact – boolean. If true, the the regions are considered as intersecting only if their
coordinates are exactly the same

Returns a new GMQLDataset

Example of usage. We compute the exact difference between Example_Dataset_1 and Exam-
ple_Dataset_2, considering only the samples with same antibody:

21

PyGMQL Documentation, Release 0.1.2

import gmql as gl

d1 = gl.get_example_dataset("Example_Dataset_1")
d2 = gl.get_example_dataset("Example_Dataset_2")

result = d1.difference(other=d2, exact=True, joinBy=['antibody'])

union(other, left_name=’LEFT’, right_name=’RIGHT’)
Wrapper of UNION

The UNION operation is used to integrate homogeneous or heterogeneous samples of two datasets within
a single dataset; for each sample of either one of the input datasets, a sample is created in the result as
follows:

• its metadata are the same as in the original sample;

• its schema is the schema of the first (left) input dataset; new identifiers are assigned to each output
sample;

• its regions are the same (in coordinates and attribute values) as in the original sample. Region at-
tributes which are missing in an input dataset sample (w.r.t. the merged schema) are set to null.

Parameters

• other – a GMQLDataset

• left_name – name that you want to assign to the left dataset

• right_name – name tha t you want to assign to the right dataset

Returns a new GMQLDataset

Example of usage:

import gmql as gl

d1 = gl.get_example_dataset("Example_Dataset_1")
d2 = gl.get_example_dataset("Example_Dataset_2")

result = d1.union(other=d2, left_name="D1", right_name="D2")

merge(groupBy=None)
Wrapper of MERGE

The MERGE operator builds a new dataset consisting of a single sample having

• as regions all the regions of all the input samples, with the same attributes and values

• as metadata the union of all the metadata attribute-values of the input samples.

A groupby clause can be specified on metadata: the samples are then partitioned in groups, each with
a distinct value of the grouping metadata attributes, and the MERGE operation is applied to each group
separately, yielding to one sample in the result dataset for each group. Samples without the grouping
metadata attributes are disregarded

Parameters groupBy – list of metadata attributes

Returns a new GMQLDataset

Example of usage:

22 Chapter 5. The GMQLDataset

PyGMQL Documentation, Release 0.1.2

import gmql as gl

d1 = gl.get_example_dataset("Example_Dataset_1")
result = d1.merge(['antibody'])

group(meta=None, meta_aggregates=None, regs=None, regs_aggregates=None,
meta_group_name=’_group’)

Wrapper of GROUP

The GROUP operator is used for grouping both regions and/or metadata of input dataset samples according
to distinct values of certain attributes (known as grouping attributes); new grouping attributes are added
to samples in the output dataset, storing the results of aggregate function evaluations over metadata and/or
regions in each group of samples. Samples having missing values for any of the grouping attributes are
discarded.

Parameters

• meta – (optional) a list of metadata attributes

• meta_aggregates – (optional) {‘new_attr’: fun}

• regs – (optional) a list of region fields

• regs_aggregates – {‘new_attr’: fun}

• meta_group_name – (optional) the name to give to the group attribute in the metadata

Returns a new GMQLDataset

Example of usage. We group samples by antibody and we aggregate the region pvalues taking the maxi-
mum value calling the new region field maxPvalue:

import gmql as gl

d1 = gl.get_example_dataset("Example_Dataset_1")
result = d1.group(meta=['antibody'], regs_aggregates={'maxPvalue': gl.MAX(
→˓"pvalue")})

meta_group(meta, meta_aggregates=None)
Wrapper of GROUP

Group operation only for metadata. For further information check group()

regs_group(regs, regs_aggregates=None)
Wrapper of GROUP

Group operation only for region data. For further information check group()

materialize(output_path=None, output_name=None, all_load=True, mode=None)
Wrapper of MATERIALIZE

Starts the execution of the operations for the GMQLDataset. PyGMQL implements lazy execution and no
operation is performed until the materialization of the results is requestd. This operation can happen both
locally or remotely.

• Local mode: if the GMQLDataset is local (based on local data) the user can specify the

Parameters

• output_path – (Optional) If specified, the user can say where to locally save the results
of the computations.

23

PyGMQL Documentation, Release 0.1.2

• output_name – (Optional) Can be used only if the dataset is remote. It represents the
name that the user wants to give to the resulting dataset on the server

• all_load – (Optional) It specifies if the result dataset should be directly converted to a
GDataframe (True) or to a GMQLDataset (False) for future local queries.

Returns A GDataframe or a GMQLDataset

head(n=5)
Returns a small set of regions and metadata from a query. It is supposed to be used for debugging purposes
or for data exploration.

Parameters n – how many samples to retrieve

Returns a GDataframe

5.1 Loading functions

You can create a GMQLDataset by loading the data using the following functions:

load_from_file(path, parser: gmql.dataset.parsers.RegionParser.RegionParser)
Loads a GDM dataset from a single BED-like file.

Parameters

• path – location of the file

• parser – RegionParser object specifying the parser of the file

Returns a GMQLDataset

load_from_path(local_path, parser=None)
Loads the data from a local path into a GMQLDataset. The loading of the files is “lazy”, which means that
the files are loaded only when the user does a materialization (see materialize()). The user can force the
materialization of the data (maybe for an initial data exploration on only the metadata) by setting the reg_load
(load in memory the region data), meta_load (load in memory the metadata) or all_load (load both region
and meta data in memory). If the user specifies this final parameter as True, a GDataframe is returned,
otherwise a GMQLDataset is returned

Parameters

• local_path – local path of the dataset

• parser – the parser to be used for reading the data

• all_load – if set to True, both region and meta data are loaded in memory and an instance
of GDataframe is returned

Returns A new GMQLDataset or a GDataframe

load_from_remote(remote_name, owner=None)
Loads the data from a remote repository.

Parameters

• remote_name – The name of the dataset in the remote repository

• owner – (optional) The owner of the dataset. If nothing is provided, the current user is
used. For public datasets use ‘public’.

Returns A new GMQLDataset or a GDataframe

24 Chapter 5. The GMQLDataset

CHAPTER 6

Building expressions

When doing a selection (using meta_select(), reg_select()) or a projection (using meta_project(),
reg_project()) you are required to specify an expression on the metadata or region fields.

An expression can therefore use metadata attributes or region fields. Given a GMQLDataset dataset, one can access
its region fields by typing:

dataset.field1
dataset.field2
dataset.chr
dataset.start
...

and one can access its metadata attributes by typing:

dataset['metadata_attribute_1']
dataset['metadata_attribute_2']
dataset['metadata_attribute_3']
...

The expressions in PyGMQL can be of two types:

• Predicate: a logical condition that enables to select a portion of the dataset. This expression is used in selection.
Some example of predicates follow:

region predicate
(dataset.chr == 'chr1' || dataset.pValue < 0.9)
region predicate with access to metadata attributes
dataset.score > dataset['size']

It is possible, based on the function that requires a predicate, to mix region fields and metadata attributes in a
region condition. Of course it is not possible to mix metadata and region conditions in a metadata selection (this
is due to the fact that to each metadata attribute can be associated multiple values for each region field).

• Extension: a mathematical expression describing how to build new metadata or region fields based on the
existent ones. Some examples of expression follow:

25

PyGMQL Documentation, Release 0.1.2

region expression
dataset.start + dataset.stop
dataset.p_value / dataset.q_value
metadata expression
dataset['size'] * 8.9
dataset['score'] / dataset['size']

It is possible to mix region fields and metadata attributes in region extensions:

region expression using metadata attributes
(dataset.pvalue / 2) + dataset['metadata'] + 1

26 Chapter 6. Building expressions

CHAPTER 7

GDataframe

class GDataframe(regs=None, meta=None)
Class holding the result of a materialization of a GMQLDataset. It is composed by two data structures:

• A table with the region data

• A table with the metadata corresponding to the regions

to_dataset_files(local_path=None, remote_path=None)
Save the GDataframe to a local or remote location

Parameters

• local_path – a local path to the folder in which the data must be saved

• remote_path – a remote dataset name that wants to be used for these data

Returns None

to_GMQLDataset(local_path=None, remote_path=None)
Converts the GDataframe in a GMQLDataset for later local or remote computation

Returns a GMQLDataset

project_meta(attributes)
Projects the specified metadata attributes to new region fields

Parameters attributes – a list of metadata attributes

Returns a new GDataframe with additional region fields

to_matrix(index_regs=None, index_meta=None, columns_regs=None, columns_meta=None, val-
ues_regs=None, values_meta=None, **kwargs)

Transforms the GDataframe to a pivot matrix having as index and columns the ones specified. This function
is a wrapper around the pivot_table function of Pandas.

Parameters

• index_regs – list of region fields to use as index

• index_meta – list of metadata attributes to use as index

27

PyGMQL Documentation, Release 0.1.2

• columns_regs – list of region fields to use as columns

• columns_meta – list of metadata attributes to use as columns

• values_regs – list of region fields to use as values

• values_meta – list of metadata attributes to use as values

• kwargs – other parameters to pass to the pivot_table function

Returns a Pandas dataframe having as index the union of index_regs and index_meta, as
columns the union of columns_regs and columns_meta and as values ths union of values_regs
and values_meta

28 Chapter 7. GDataframe

CHAPTER 8

Remote data management

PyGMQL can be used in two different ways. The first one (and the most intuitive and classical one) is to use it like
any other computational library.

PyGMQL also manages the execution through a remote server (or cluster). In order to use this feature the user needs
to login to the remote service before.

The web service offered by the GeCo group at Politecnico di Milano can be found at http://gmql.eu/gmql-rest/

8.1 Loggin in

This can be done by firstly specifying the remote server address:

import gmql as gl
gl.set_remote_address("http://gmql.eu/gmql-rest/")

and then by logging in into the system:

gl.login()

From this point on the user will be logged into the remote system.

8.2 Guest users VS Authenticated users

GMQL and PyGMQL enable two different ways to interact with the remote service. The users can be logged as:

• Guest user: the user doesn’t need to register to the service and a only a limited storage and computational power
is available for the queries. The access token (which is automatically handled by the library) will expire after a
certain period of inactivity.

• Authenticated user: the user needs to register on the web interface before providing username, password and
other information. The access token is stored and can be used for an unlimited amount of time.

29

http://gmql.eu/gmql-rest/

PyGMQL Documentation, Release 0.1.2

By default, the sequence of operations that are shown above will log the user as guest.

In both cases a folder in the home directory of the user will be created with name .pygmql and inside of it there will
be a sessions.xml file which will store all the active sessions for the user.

8.3 Logging as an authenticated user

Once you are registered in the web service with a username and password, in order to use the same credentials also
in PyGMQL you have to use the pygmql_login tool. This tool is automatically installed when the library is
downloaded and installed (both from github or pip).

On linux/MacOS:

pygmql.sh --login

On Windows:

pygmql_win --login

Once the tool is executed the following information will be asked:

• The http address of the remote service you want to access

• Username

• Password

8.4 Library modes

The library mode can be setted in the following way:

gl.set_mode("remote") # remote processing of the following operations
gl.set_mode("local") # local processing of the following operations

Notice that the set_mode() will act only on the following materialize() operations while the previous ones
will be performed with the previous setted modality.

The default mode of PyGMQL is local.

8.4.1 The remote execution mode

When the user sets the remote mode and calls the materialize() operation, the following actions will be per-
formed

1. The local datasets that are used are uploaded to the remote service. Nothing is done to the remote datasets used
in the query (if present) since they are already on the server.

2. A compressed representation of the query is sent to the remote service, decoded and executed

3. Once the execution is complete, the results are downloaded, stored and loaded into a GDataframe().

30 Chapter 8. Remote data management

PyGMQL Documentation, Release 0.1.2

8.4. Library modes 31

PyGMQL Documentation, Release 0.1.2

32 Chapter 8. Remote data management

CHAPTER 9

Library settings

The following functions define the behavior of the library

9.1 Logging and progress bars

set_progress(how)
Enables or disables the progress bars for the loading, writing and downloading of datasets

Parameters how – True if you want the progress bar, False otherwise

Returns None

Example:

import gmql as gl

gl.set_progress(True) # abilitates progress bars
....do something...
gl.set_progress(False) # removes progress bars
....do something...

9.2 Execution Mode

set_mode(how)
Sets the behavior of the API

Parameters how – if ‘remote’ all the execution is performed on the remote server; if ‘local’ all it is
executed locally. Default = ‘local’

Returns None

33

PyGMQL Documentation, Release 0.1.2

9.3 Master Configuration

set_master(master: str)
Set the master of the PyGMQL instance. It accepts any master configuration available in Spark.

Parameters master – master configuration

Returns None

get_configuration()
Returns the configurations of the current PyGMQL instance

Returns a Configuration object

set_spark_configs(d)
Set Spark configurations to be used during the spark-submit. Works only when the master is different from
local.

Parameters d – a dictionary of {key: values}

Returns None

set_local_java_options(options: list)
When the mode is set to local, this function can be used to add JVM specific options before starting the backend.
It accepts any Java option.

Parameters options – list of string, one for each Java option

Returns None

9.4 Remote Management

get_remote_manager()
Returns the current remote manager

Returns a RemoteManager

login()
Enables the user to login to the remote GMQL service. If both username and password are None, the user will
be connected as guest.

logout()
The user can use this command to logout from the remote service

Returns None

set_remote_address(address)
Enables the user to set the address of the GMQL remote service

Parameters address – a string representing the URL of GMQL remote service

Returns None

34 Chapter 9. Library settings

CHAPTER 10

Spark and system configurations

The configuration of the Java properties and the Spark environment can be done by getting the singleton instance of
the configuration class as follows:

conf = gl.get_configuration()

Follows the description of this object:

class Configuration
Class containing all the information regarding the system environment and the Spark environment

set_app_name(name)
Sets the name of the application in spark, By default it is called “gmql_api”

Parameters name – string

Returns None

set_master(master)
Set the master of the spark cluster By default it is “local[*]”

Parameters master – string

Returns None

set_spark_conf(key=None, value=None, d=None)
Sets a spark property as a (‘key’, ‘value’) pair of using a dictionary {‘key’: ‘value’, . . . }

Parameters

• key – string

• value – string

• d – dictionary

Returns None

set_system_conf(key=None, value=None, d=None)
Sets a java system property as a (‘key’, ‘value’) pair of using a dictionary {‘key’: ‘value’, . . . }

35

PyGMQL Documentation, Release 0.1.2

Parameters

• key – string

• value – string

• d – dictionary

Returns None

• genindex

• modindex

• search

36 Chapter 10. Spark and system configurations

CHAPTER 11

Tutorials

11.1 Tutorial 1: Simple example of local processing

11.2 Tutorial 2: Mixing local and remote processing

11.3 Tutorial 3: GWAS on a cloud

37

PyGMQL Documentation, Release 0.1.2

38 Chapter 11. Tutorials

CHAPTER 12

Data structures and functions

12.1 Dataset structures

GMQLDataset.GMQLDataset The main abstraction of the library.
GDataframe.GDataframe Class holding the result of a materialization of a GMQL-

Dataset.

12.2 Dataset loading functions

load_from_path Loads the data from a local path into a GMQLDataset.
load_from_remote Loads the data from a remote repository.

12.3 Parsing

For the list of the available parsers go to:

12.3.1 Parsers

Predefined parsers

class BedParser
Standard Full BED Parser of 10 Columns

class ANNParser
Annotation Parser, 6 columns

class BasicParser
Parser for Chr, Start, Stop only (no Strand)

39

PyGMQL Documentation, Release 0.1.2

class NarrowPeakParser
Narrow Peaks Parser. 10 columns

class RnaSeqParser
Standard Full BED Parser of 10 Columns

class BedScoreParser
Standard Full BED Parser of 10 Columns

Customizable parser

All the parsers in PyGMQL extend the RegionParser

class RegionParser(gmql_parser=None, chrPos=None, startPos=None, stopPos=None, strand-
Pos=None, otherPos=None, delimiter=’t’, coordinate_system=’0-based’,
schema_format=’del’, parser_name=’parser’)

Creates a custom region dataset

Parameters

• chrPos – position of the chromosome column

• startPos – position of the start column

• stopPos – position of the stop column

• strandPos – (optional) position of the strand column. Default is None

• otherPos – (optional) list of tuples of the type [(pos, attr_name, typeFun), . . .]. Default
is None

• delimiter – (optional) delimiter of the columns of the file. Default ” “

• coordinate_system – can be {‘0-based’, ‘1-based’, ‘default’}. Default is ‘0-based’

• schema_format – (optional) type of file. Can be {‘tab’, ‘gtf’, ‘vcf’, ‘del’}. Default is
‘del’

• parser_name – (optional) name of the parser. Default is ‘parser’

get_gmql_parser()
Gets the Scala implementation of the parser

Returns a Java Object

static parse_strand(strand)
Defines how to parse the strand column

Parameters strand – a string representing the strand

Returns the parsed result

parse_regions(path)
Given a file path, it loads it into memory as a Pandas dataframe

Parameters path – file path

Returns a Pandas Dataframe

get_attributes()
Returns the unordered list of attributes

Returns list of strings

40 Chapter 12. Data structures and functions

PyGMQL Documentation, Release 0.1.2

get_ordered_attributes()
Returns the ordered list of attributes

Returns list of strings

get_types()
Returns the unordered list of data types

Returns list of data types

get_name_type_dict()
Returns a dictionary of the type {‘column_name’: data_type, . . . }

Returns dict

get_ordered_types()
Returns the ordered list of data types

Returns list of data types

12.4 Aggregates operators

COUNT() Counts the number of regions in the group.
SUM(argument) Computes the sum of the values of the specified attribute
MIN(argument) Gets the minimum value in the aggregation group for

the specified attribute
MAX(argument) Gets the maximum value in the aggregation group for

the specified attribute
AVG(argument) Gets the average value in the aggregation group for the

specified attribute
BAG(argument) Creates space-separated string of attribute values for the

specified attribute.
STD(argument) Gets the standard deviation of the aggregation group for

the specified attribute
MEDIAN(argument) Gets the median value of the aggregation group for the

specified attribute
Q1(argument) Gets the first quartile for the specified attribute
Q2(argument) Gets the second quartile for the specified attribute
Q3(argument) Gets the third quartile for the specified attribute

12.5 Genometric predicates

MD(number) Denotes the minimum distance clause, which selects the
first K regions of an experiment sample at minimal dis-
tance from an anchor region of an anchor dataset sam-
ple.

DLE(limit) Denotes the less-equal distance clause, which selects all
the regions of the experiment such that their distance
from the anchor region is less than, or equal to, N bases.

DL(limit) Less than distance clause, which selects all the regions
of the experiment such that their distance from the an-
chor region is less than N bases

Continued on next page

12.5. Genometric predicates 41

PyGMQL Documentation, Release 0.1.2

Table 4 – continued from previous page
DGE(limit) Greater-equal distance clause, which selects all the re-

gions of the experiment such that their distance from the
anchor region is greater than, or equal to, N bases

DG(limit) Greater than distance clause, which selects all the re-
gions of the experiment such that their distance from
the anchor region is greater than N bases

UP() Upstream.
DOWN() Downstream.

12.6 Mathematical operators

SQRT(argument) Computes the square matrix of the argument

42 Chapter 12. Data structures and functions

Python Module Index

g
gmql.dataset.loaders.Loader, 24

43

PyGMQL Documentation, Release 0.1.2

44 Python Module Index

Index

A
ANNParser (class in gmql.dataset.parsers.Parsers), 39

B
BasicParser (class in gmql.dataset.parsers.Parsers),

39
BedParser (class in gmql.dataset.parsers.Parsers), 39
BedScoreParser (class in

gmql.dataset.parsers.Parsers), 40

C
Configuration (class in gmql.configuration), 35
cover() (GMQLDataset method), 17

D
difference() (GMQLDataset method), 21

E
extend() (GMQLDataset method), 17

F
flat_cover() (GMQLDataset method), 18

G
GDataframe (class in gmql.dataset.GDataframe), 27
get_attributes() (RegionParser method), 40
get_configuration() (in module gmql.settings),

34
get_gmql_parser() (RegionParser method), 40
get_name_type_dict() (RegionParser method), 41
get_ordered_attributes() (RegionParser

method), 40
get_ordered_types() (RegionParser method), 41
get_reg_attributes() (GMQLDataset method),

13
get_remote_manager() (in module

gmql.managers), 34
get_types() (RegionParser method), 41
gmql.dataset.loaders.Loader (module), 24

GMQLDataset (class in gmql.dataset.GMQLDataset),
13

group() (GMQLDataset method), 23

H
head() (GMQLDataset method), 24
histogram_cover() (GMQLDataset method), 18

J
join() (GMQLDataset method), 19

L
load_from_file() (in module

gmql.dataset.loaders.Loader), 24
load_from_path() (in module

gmql.dataset.loaders.Loader), 24
load_from_remote() (in module

gmql.dataset.loaders.Loader), 24
login() (in module gmql.managers), 34
logout() (in module gmql.managers), 34

M
map() (GMQLDataset method), 20
materialize() (GMQLDataset method), 23
merge() (GMQLDataset method), 22
meta_group() (GMQLDataset method), 23
meta_project() (GMQLDataset method), 16
meta_select() (GMQLDataset method), 14
MetaField() (GMQLDataset method), 13

N
NarrowPeakParser (class in

gmql.dataset.parsers.Parsers), 39
normal_cover() (GMQLDataset method), 18

O
order() (GMQLDataset method), 20

P
parse_regions() (RegionParser method), 40

45

PyGMQL Documentation, Release 0.1.2

parse_strand() (RegionParser static method), 40
project() (GMQLDataset method), 16
project_meta() (GDataframe method), 27

R
reg_project() (GMQLDataset method), 17
reg_select() (GMQLDataset method), 15
RegField() (GMQLDataset method), 13
RegionParser (class in

gmql.dataset.parsers.RegionParser), 40
regs_group() (GMQLDataset method), 23
RnaSeqParser (class in

gmql.dataset.parsers.Parsers), 40

S
select() (GMQLDataset method), 14
set_app_name() (Configuration method), 35
set_local_java_options() (in module

gmql.settings), 34
set_master() (Configuration method), 35
set_master() (in module gmql.settings), 34
set_mode() (in module gmql.settings), 33
set_progress() (in module gmql.settings), 33
set_remote_address() (in module gmql.settings),

34
set_spark_conf() (Configuration method), 35
set_spark_configs() (in module gmql.settings),

34
set_system_conf() (Configuration method), 35
summit_cover() (GMQLDataset method), 18

T
to_dataset_files() (GDataframe method), 27
to_GMQLDataset() (GDataframe method), 27
to_matrix() (GDataframe method), 27

U
union() (GMQLDataset method), 22

46 Index

	Installation
	Introduction
	The Genomic data model
	Genometric Query Language
	The GMQLDataset
	Building expressions
	GDataframe
	Remote data management
	Library settings
	Spark and system configurations
	Tutorials
	Data structures and functions
	Python Module Index
	Index

